WACV 2022 – Main Conference: StickyLocalization: Robust End-To-End Relocalization on Point Clouds using Graph Neural Networks

Kai Fischer, Martin Simon, Stefan Milz, Patrick Mader

Home | WACV 2022

Abstract: Relocalization inside pre-built maps provides a big benefit in the course of today’s autonomous driving tasks where the map can be considered as an additional sensor for refining the estimated current pose of the vehicle. Due to potentially large drifts in the initial pose guess as well as maps containing unfiltered dynamic and temporal static objects (eg parking cars), traditional methods like ICP tend to fail and show high computation times. We propose a novel and fast relocalization method for accurate pose estimation inside a pre-built map based on 3D point clouds. The method is robust against inaccurate initialization caused by low performance GPS systems and tolerates the presence of unfiltered objects by specifically learning to extract significant features from current scans and adjacent map sections. More specifically, we introduce a novel distance-based matching loss enabling us to simultaneously extract important information from raw point clouds and aggregating inner-and inter-cloud context by utilizing self-and cross-attention inside a Graph Neural Network. We evaluate StickyLocalization’s (SL) performance through an extensive series of experiments using two benchmark datasets in terms of Relocalization on NuScenes and Loop Closing using KITTI’s Odometry dataset. We found that SL outperforms state-of-the art point cloud registration and relocalization methods in terms of transformation errors and runtime.


written by